The complete solution of the inequation ${x^2} - 4x < 12\,{\rm{ is}}$
$x < - \,2$ or $x > 6$
$ - \,6 < x < 2$
$2 < x < 6$
$ - \,2 < x < 6$
Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows:
$f(x)=x^2+a x+2 ; g(x)=x^2+2 x+a$.If the equations $f(x)=0$ and $g(x)=0$ have a common root, then the sum of the roots of the equation $f(x)+g(x)=0$ is
The sum of the roots of the equation $x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$, is :
Let $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ and $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ be polynomials having two common roots $\alpha$ and $\beta$. Suppose there exist polynomials $q_1(x)$ and $q_2(x)$ such that $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. Then the correct identity is
If graph of $y = ax^2 -bx + c$ is following, then sign of $a$, $b$, $c$ are
Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1} + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is