Sum of infinite number of terms in $G.P.$ is $20$ and sum of their square is $100$. The common ratio of $G.P.$ is
$5$
$3/5$
$8/5$
$1/5$
The sum of a $G.P.$ with common ratio $3$ is $364$, and last term is $243$, then the number of terms is
The first term of a $G.P.$ is $7$, the last term is $448$ and sum of all terms is $889$, then the common ratio is
How many terms of the $G.P.$ $3, \frac{3}{2}, \frac{3}{4}, \ldots$ are needed to give the sum $\frac{3069}{512} ?$
Suppose four distinct positive numbers $a_1, a_2, a_3, a_4$ are in $G.P.$ Let $b_1=a_1, b_2=b_1+a_2, b_3=b_2+a_3$ and $b_4=b_3+a_4$.
$STATEMENT-1$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are neither in $A.P$. nor in $G.P.$ and
$STATEMENT-2$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are in $H.P.$
The number of natural number $n$ in the interval $[1005, 2010]$ for which the polynomial. $1+x+x^2+x^3+\ldots+x^{n-1}$ divides the polynomial $1+x^2+x^4+x^6+\ldots+x^{2010}$ is