Steam at $100°C$ is passed into $1.1\, kg$ of water contained in a calorimeter of water equivalent $0.02 \,kg$ at $15°C$ till the temperature of the calorimeter and its contents rises to $80°C.$ The mass of the steam condensed in $kg$ is
$0.13$
$0.065$
$0.26$
$0.135$
$1\,\, kg$ of ice at $-10^o C$ is mixed with $4.4\,\, kg$ of water at $30^o C$. The final temperature of mixture is ........$^oC$ (specific heat of ice is $2100\,\,J/kg/k$)
Heat is being supplied at a constant rate to the sphere of ice which is melting at the rate of $0.1 \,gm / s$. It melts completely in $100 \,s$. The rate of rise of temperature thereafter will be ............ $^{\circ} C / s$
The thermal capacity of a body is $80\, cal$, then its water equivalent is
Calculate the heat required to convert $3\; kg$ of ice at $-12\,^{\circ} C$ kept in a calorimeter to steam at $100\,^{\circ} C$ at atmospheric pressure. Given specific heat capacity of $ice =2100\; J \,kg ^{-1} K ^{-1}$. specific heat capacity of water $=4186\; J kg ^{-1} K ^{-1}$, latent heat of fusion of ice $=3.35 \times 10^{5} \;J \,kg ^{-1}$ and latent heat of steam $=2.256 \times 10^{6}\; J \,kg ^{-1}$
A block of mass $2.5\,\, kg$ is heated to temperature of $500^o C$ and placed on a large ice block. ......... $kg$ is the maximum amount of ice that can melt (approx.). Specific heat for the body $= 0.1 Cal/gm^o C$.