The thermal capacity of a body is $80\, cal$, then its water equivalent is

  • A

    $80 \,cal / gm$

  • B

    $8\, gm$

  • C

    $80 \,gm$

  • D

    $80 \,kg$

Similar Questions

Ice in a freezer is at $-7^{\circ} C .100 \,g$ of this ice is mixed with $200 \,g$ of water at $15^{\circ} C$. Take the freezing temperature of water to be $0^{\circ} C$, the specific heat of ice equal to $2.2 \,J / g { }^{\circ} C$, specific heat of water equal to $4.2 \,J / g ^{\circ} C$ and the latent heat of ice equal to $335 \,J / g$. Assuming no loss of heat to the environment, the mass of ice in the final mixture is closest to .......... $g$

  • [KVPY 2017]

A calorimeter of water equivalent $20\, g$ contains $180\, g$ of water at $25^{\circ} C$. '$m$' grams of steam at $100^{\circ} C$ is mixed in it till the temperature of the mixure is $31^{\circ} C$. The value of $'m'$ is close to

(Latent heat of water $=540$ cal $g ^{-1}$, specific heat of water $=1$ cal $g^{-1}{ }^{\circ} C ^{-1}$ )

  • [JEE MAIN 2020]

A heater supplying constant power $P$ watts is switched $ON$ at time $t=0 \,min$ to raise the temperature of a liquid kept in a calorimeter of negligible heat capacity. A student records the temperature of the liquid $T(t)$ at equal time intervals. A graph is plotted with $T(t)$ on the $Y$-axis versus $t$ on the $X$-axis. Assume that there is no heat loss to the surroundings during heating. Then,

  • [KVPY 2019]

We have half a bucket ($6$ litre) of water at $20^oC $.If we want water at $40^oC$, how much steam at $100^oC$ should be added to it ?

$200 \,g$ of ice at $-20^{\circ} C$ is mixed with $500 \,g$ of water at $20^{\circ} C$ in an insulating vessel. Final mass of water in vessel is ........... $g$ (specific heat of ice $=0.5 \,cal g ^{-10} C ^{-1}$ )