Statement $\quad(P \Rightarrow Q) \wedge(R \Rightarrow Q)$ is logically equivalent to
$( P \vee R ) \Rightarrow Q$
$( P \Rightarrow R ) \wedge( Q \Rightarrow R )$
$( P \Rightarrow R ) \vee( Q \Rightarrow R )$
$(P \wedge R) \Rightarrow Q$
The statement $p → (p \leftrightarrow q)$ is logically equivalent to :-
The contrapositive of the statement "If it is raining, then I will not come", is
$\left( {p \wedge \sim q \wedge \sim r} \right) \vee \left( { \sim p \wedge q \wedge \sim r} \right) \vee \left( { \sim p \wedge \sim q \wedge r} \right)$ is equivalent to-
The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to
The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to