State and explain the characteristics of vector product of two vectors.
$(1)$ $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$
The vector product of two vector is not commutative but $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$ is opposite to each other
However $|\vec{a} \times \vec{b}|=|\vec{b} \times \vec{a}|$
$(2)$ Scalar product act behave like reflection (taking image in mirror) $x \rightarrow-x, y \rightarrow-y$ and $z \rightarrow$ $-z$.
In reflection occurrence all components changes sign mean positive vector becomes negative.
So, $\vec{a} \times \vec{b} \rightarrow(-\vec{a}) \times(-\vec{b})=\vec{a} \times \vec{b}$
Hence, in reflection sign is not change in resultant.
$(3)$ Vector product obeys distributive law :
$\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
$(4)$ For two non-zero vectors $\vec{a} \times \vec{a}=\overrightarrow{0}$
where $\overrightarrow{0}$ is vector of zero modulus
Here $\vec{a} \times \vec{a} =(a)(a) \sin 0^{\circ} \hat{n}$ $=\overrightarrow{0}$
( $\because$ Angle between $\vec{a}$ and $\vec{a}$ is $0^{\circ}$ )
Hence, condition of parallel or anti parallel of two non-zero vectors is that its vector product should be zero.
$(5)$ If two non-zero vector is perpendicular, then
$\vec{a} \times \vec{b} =a b \sin 90^{\circ} \hat{n}$
$=a b \hat{n}$
where $\hat{n}$ is unit vector in direction of $\vec{a} \times \vec{b}$.
$(6)$ Vector product for unit vector of cartesian co-ordinate system.
Dot product of two mutual perpendicular vector is
$\overrightarrow A $ and $\overrightarrow B $ are two vectors given by $\overrightarrow A = 2\widehat i + 3\widehat j$ and $\overrightarrow B = \widehat i + \widehat j$. The magnitude of the component (projection) of $\overrightarrow A$ on $\overrightarrow B$ is
If $\overrightarrow{ P } \times \overrightarrow{ Q }=\overrightarrow{ Q } \times \overrightarrow{ P },$ the angle between $\overrightarrow{ P }$ and $\overrightarrow{ Q }$ is $\theta\left(0^{\circ} < \theta < 360^{\circ}\right) .$ The value of $\theta$ will be ........
Explain the geometrical interpretation of scalar product of two vectors.
Vectors $a \hat{i}+b \hat{j}+\hat{k}$ and $2 \hat{i}-3 \hat{j}+4 \hat{k}$ are perpendicular to each other when $3 a+2 b=7$, the ratio of a to $b$ is $\frac{x}{2}$. The value of $x$ is $..............$