Six vectors, $\overrightarrow a$ through $\overrightarrow f$ have the magnitudes and directions indicated in the figure. Which of the following statements is true ?
$\overrightarrow {b} +\overrightarrow {c} =\overrightarrow {f} $
$\overrightarrow {d} +\overrightarrow {c} = \overrightarrow {f} $
$\overrightarrow {d} +\overrightarrow {e}=\overrightarrow {f} $
$\overrightarrow {b} +\overrightarrow {e}=\overrightarrow {f} $
$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find $\overrightarrow{A B}+\overrightarrow{A C}=n \overrightarrow{A O}$ then $n = ........ $
The vectors $5i + 8j$ and $2i + 7j$ are added. The magnitude of the sum of these vector is
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is
The three vectors $\overrightarrow A = 3\hat i - 2\hat j + \hat k,\,\,\overrightarrow B = \hat i - 3\hat j + 5\hat k$ and $\overrightarrow C = 2\hat i + \hat j - 4\hat k$ form
The vector $\overrightarrow{O A}$ where $O$ is origin is given by $\overrightarrow{O A}=2 \hat{i}+2 \hat{j}$. Now it is rotated by $45^{\circ}$ anticlockwise about $O$. What will be the new vector?