Six charges are placed around a regular hexagon of side length a as shown in the figure. Five of them have charge $q$, and the remaining one has charge $x$. The perpendicular from each charge to the nearest hexagon side passes through the center $O$ of the hexagon and is bisected by the side.

Which of the following statement($s$) is(are) correct in SI units?

$(A)$ When $x=q$, the magnitude of the electric field at $O$ is zero.

$(B)$ When $x=-q$, the magnitude of the electric field at $O$ is $\frac{q}{6 \pi \epsilon_0 a^2}$.

$(C)$ When $x=2 q$, the potential at $O$ is $\frac{7 q}{4 \sqrt{3} \pi \epsilon_0 a}$.

$(D)$ When $x=-3 q$, the potential at $O$ is $\frac{3 q}{4 \sqrt{3} \pi \epsilon_0 a}$.

224349-q

  • [IIT 2022]
  • A

    $A,B,C$

  • B

    $A,B,D$

  • C

    $A,B$

  • D

    $A,C$

Similar Questions

An electric charge $10^{-3}\ \mu C$ is placed at the origin $(0, 0)$ of $X-Y$ coordinate  system. Two points $A$ and $B$ are situated at $(\sqrt 2 ,\sqrt 2 )$ and $(2, 0)$ respectively. The potential difference between the points $A$ and $B$ will be......$V$

Consider three concentric metallic spheres $A, B$ and $C$ of radii $a , b, c$, respectively where $a < b < c$. $A$ and $B$ are connected, whereas $C$ is grounded. The potential of the middle sphere $B$ is raised to $V$, then the charge on the sphere $C$ is

  • [KVPY 2012]

Charges are placed on the vertices of a square as shown Let $\vec E$ be the electric field and $V$ the potential at the centre. If the charges on $A$ and $B$ are interchanged with those on $D$ and $C$ respectively, then

  • [AIEEE 2007]

A spherical drop of mercury having a potential of $2.5\, V$ is obtained as a result of merging $125$ droplets. The potential of constituent droplets would be........$V$

$STATEMENT-1$ For practical purposes, the earth is used as a reference at zero potential in electrical circuits.and

$STATEMENT-2$ The electrical potential of a sphere of radius $R$ with charge $\mathrm{Q}$ uniformly distributed on the surface is given by $\frac{\mathrm{Q}}{4 \pi \varepsilon_0 R}$.

  • [IIT 2008]