$STATEMENT-1$ For practical purposes, the earth is used as a reference at zero potential in electrical circuits.and
$STATEMENT-2$ The electrical potential of a sphere of radius $R$ with charge $\mathrm{Q}$ uniformly distributed on the surface is given by $\frac{\mathrm{Q}}{4 \pi \varepsilon_0 R}$.
$STATEMENT-1$ is True, $STATEMENT-2$ is True; $STATEMENT-2$ is a correct explanation for $STATEMENT-1$
$STATEMENT-1$ is True, $STATEMENT-2$ is True; $STATEMENT-2$ is $NOT$ a correct explanation for $STATEMENT-1$
$STATEMENT -1$ is True, $STATEMENT-2$ is False
$STATEMENT -1$ is False, $STATEMENT-2$ is True
Four charges $ + Q,\, - Q,\, + Q,\, - Q$ are placed at the corners of a square taken in order. At the centre of the square
Electric charges of $+10\,\mu\, C, +5\,\mu\, C, -3\,\mu\, C$ and $+8\,\mu\, C$ are placed at the corners of a square of side$\sqrt 2\,m$ . The potential at the centre of the square is
Two point charges $-Q$ and $+Q / \sqrt{3}$ are placed in the xy-plane at the origin $(0,0)$ and a point $(2,0)$, respectively, as shown in the figure. This results in an equipotential circle of radius $R$ and potential $V =0$ in the $xy$-plane with its center at $(b, 0)$. All lengths are measured in meters.
($1$) The value of $R$ is. . . . meter.
($2$) The value of $b$ is. . . . . .meter.
Three concentric metallic shells $A, B$ and $C$ of radii $a, b$ and $c (a < b < c)$ have surface charge densities $\sigma ,\, - \sigma $ and $\sigma $ respectively. then ${V_A}$ and ${V_B}$
Three concentric metallic spherical shell $A, B$ and $C$ or radii $a, b$ and $c$ $(a < b < c)$ have surface charge densities $- \sigma , + \sigma ,$ and $- \sigma $ respectively. The potential of shell $A$ is :