छः आवेशों $+ q - q + q .- q$, $+ q$ एवं $- q$ को $d$ भुजा वाले एक षटभुज के कौनो पर चित्रानुसार लगाया गया है। अनन्त से आवेश $q _0$ को षटभुज के केन्द्र तक लाने में किया गया कार्य है :
( $\varepsilon_0$ - मुक्त आकाश का परावैद्युतांक)
$0$
$\frac{- q ^2}{4 \pi \varepsilon_0 d }$
$\frac{- q ^2}{4 \pi \varepsilon_0 d }\left(3-\frac{1}{\sqrt{2}}\right)$
$\frac{-q^2}{4 \pi \varepsilon_0 d }\left(6-\frac{1}{\sqrt{2}}\right)$
एक $\alpha $-कण को $200\,V$ विभवान्तर से त्वरित किया जाता है। इसकी गतिज ऊर्जा में वृद्धि ....... $eV$ होगी
निर्वात में एक $1\, \mu C$ आवेश के एक कण $A$ को बिन्दु $P$ पर दृढ़ रखा है। उसी आवेश तथा $4 \,\mu g$ द्रव्यमान के दूसरे कण $B$ को $P$ से $1\, mm$ दूरी पर रखा है। $B$ को छोड़ने पर $P$ से $9\, mm$ दूरी पर उसकी गति का मान होगा? $\left[\right.$ दिया है $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9}\, Nm ^{2} C ^{-2}\right]$
एक वर्ग की प्रत्येक भुजा की लम्बाई $'a'$ है, इसके चारों कोनों पर $4$ समान $Q$ आवेशों को रखा जाता है। उसके केन्द्र से अनन्त तक
$-Q$ आवेश को हटाने में किया गया कार्य है
इस प्रश्न में प्रकथन $1$ एवं प्रकथन $2$ दिये हुए हैं। प्रकथनों के पश्चात् दिये गये चार विकल्पों में से, उस विकल्प को चुनिए जोकि दोनों प्रकथनों का सर्वोत्तम वर्णन करता है।
त्रिज्या $R$ के एक विध्युत रोधी ठोस गोले पर एकसमान धनात्मक आवेश घनत्व $\rho$ हैं। इस एकसमान आवेश वितरण कें कारण विध्युत विभव का मान गोले के केन्द्र पर, गोले के पृष्ठ पर और गोले से बाहर एक बिन्दु पर परिमित है। अनन्त पर विध्युत विभव का मान शून्य है
प्रकथन $1 :$ जव एक आवेश $q$ को गोले के केन्द्र से पृष्ठ तक ले जाया जाता है, तब स्थितिज ऊर्जा में $\frac{q \rho}{38_{0}}$ से परिवर्तन होता है।
प्रकथन $2 :$ गोले के केन्द्र से दूरी $r( r < R)$ पर विध्युत क्षेत्र $\frac{\rho r}{3 \varepsilon_{0}}$ है।
बिदु $(0,0,-a)$ तथा $(0,0, a)$ पर दो आवेश क्रमशः $-q$ और $+q$ स्थित हैं।
(a) बिदुओं $(0,0, z)$ और $(x, y,0)$ पर स्थिरवैध्यूत विभव क्या है?
(b) मूल बिंदु से किसी बिंदु की दूरी $r$ पर विभव की निर्भरता ज्ञात कीजिए, जबकि $r / a>>1$ है।
(c) $x$ -अक्ष पर बिदु $(5,0,0)$ से बिद $(-7,0,0)$ तक एक परीक्षण आवेश को ले जाने में कितना कार्य करना होगा ? यदि परीक्षण आवेश के उन्हीं बिदुओं के बीच $x$ -अक्ष से होकर न ले जाएँ तो क्या उत्तर बद्ल जाएगा?