Simplify $(2 x-5 y)^{3}-(2 x+5 y)^{3}$
We have,
$(2 x-5 y)^{3}-(2 x+5 y)^{3}$
$=\{(2 x-5 y)-(2 x+5 y)\}\left\{(2 x-5 y)^{2}+(2 x-5 y)(2 x+5 y)+(2 x+5 y)^{2}\right\}$
$\left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right]$
$=(2 x-5 y-2 x-5 y)\left(4 x^{2}+25 y^{2}-20 x y+4 x^{2}-25 y^{2}+4 x^{2}+25 y^{2}+20 x y\right)$
$=(-10 y)\left(2 x^{2}+25 y^{2}\right)$
$=-120 x^{2} y-250 y^{3}$
Factorise
$(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$
For $p(x)=x^{3}+9 x^{2}+26 x+24$ $p(-2)=\ldots \ldots \ldots$
Factorise the following:
$1-64 a^{3}-12 a+48 a^{2}$
Classify the following as a constant, linear,quadratic and cubic polynomials:
$1+x+x^{2}$
Expand
$(3 x-2)(3 x-6)$