Show that the scalar product of two vectors obeys the law of distributive.
According to figure,
$\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{A}}, \overrightarrow{\mathrm{OQ}}=\overrightarrow{\mathrm{B}}$ and $\overrightarrow{\mathrm{QR}}=\overrightarrow{\mathrm{C}}$
Now $\vec{A} \cdot(\vec{B}+\vec{C})=($ Magnitude of $\vec{A}) \times($ Component of $\vec{B}+\vec{C}$ along the direction of $\vec{A})$
$=|\overrightarrow{\mathrm{A}}|(\mathrm{ON})$
$=|\overrightarrow{\mathrm{A}}|(\mathrm{OM}+\mathrm{MN})$
$=|\overrightarrow{\mathrm{A}}| \mathrm{OM}+|\overrightarrow{\mathrm{A}}| \mathrm{MN}$
$\therefore \quad \overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}})=|\overrightarrow{\mathrm{A}}| \times($ component of $\overrightarrow{\mathrm{B}}$ along $\overrightarrow{\mathrm{A}})+|\overrightarrow{\mathrm{A}}|$ (component of $\overrightarrow{\mathrm{C}}$ along $\overrightarrow{\mathrm{A}}$ ) $\therefore \overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}})=\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{C}}$
If a vector $2\hat i + 3\hat j + 8\hat k$ is perpendicular to the vector $4\hat j - 4\hat i + \alpha \hat k$. Then the value of $\alpha $ is
If $\overrightarrow P .\overrightarrow Q = PQ,$ then angle between $\overrightarrow P $and $\overrightarrow Q $ is ....... $^o$
Consider two vectors ${\overrightarrow F _1} = 2\hat i + 5\hat k$ and ${\overrightarrow F _2} = 3\hat j + 4\hat k.$ The magnitude of the scalar product of these vectors is
Which of the following is the unit vector perpendicular to $\overrightarrow A $ and $\overrightarrow B $