Show that $A \cap B=A \cap C$ need not imply $B = C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A=\{0,1\}, B=\{0,2,3\},$ and $C=\{0,4,5\}$

Accordingly, $A \cap B=\{0\}$ and $A \cap C=\{0\}$

Here, $A \cap B=A \cap C=\{0\}$

However, $B \ne C\,[2 \in B$ and $2 \notin C]$

Similar Questions

If $A, B$ and $C$ are any three sets, then $A - (B \cap C)$ is equal to

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$A-C$

Show that $A \cup B=A \cap B$ implies $A=B$.

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap D$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap \left( {B \cup C} \right)$