If $A, B$ and $C$ are any three sets, then $A - (B \cap C)$ is equal to
$(A - B) \cup (A - C)$
$(A - B) \cap (A - C)$
$(A - B) \cup C$
$(A - B) \cap C$
Show that $A \cup B=A \cap B$ implies $A=B$.
Let $A :\{1,2,3,4,5,6,7\}$. Define $B =\{ T \subseteq A$ : either $1 \notin T$ or $2 \in T \}$ and $C = \{ T \subseteq A : T$ the sum of all the elements of $T$ is a prime number $\}$. Then the number of elements in the set $B \cup C$ is $\dots\dots$
State whether each of the following statement is true or false. Justify you answer.
$\{2,6,10,14\}$ and $\{3,7,11,15\}$ are disjoint sets.
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup C$
If $aN = \{ ax:x \in N\} ,$ then the set $3N \cap 7N$ is .....$N$