Show that :
$2 x-3$ is a factor of $x+2 x^{3}-9 x^{2}+12$
Let $p(x)=x+2 x^{3}-9 x^{2}+12$ and $g(x)=2 x-3$
$g(x)=2 x-3=0$ gives $x=\frac{3}{2}$
$g ( x )$ will be factor of $p ( x )$ if $p\left(\frac{3}{2}\right)=0 \quad$ (Factor theorem)
Now, $\quad p\left(\frac{3}{2}\right)=\frac{3}{2}+2\left(\frac{3}{2}\right)^{3}-9\left(\frac{3}{2}\right)^{2}+12=\frac{3}{2}+2\left(\frac{27}{8}\right)-9\left(\frac{9}{4}\right)+12$
$=\frac{3}{2}+\frac{27}{4}-\frac{81}{4}+12=\frac{6+27-81+48}{4}=\frac{0}{4}=0$
Since, $p\left(\frac{3}{2}\right)=0,$ so, $g ( x )$ is a factor of $p ( x )$.
Without actually calculating the cubes, find the value of :
$\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{3}\right)^{3}-\left(\frac{5}{6}\right)^{3}$
Evaluate
$(215)^{2}$
Factorise
$49 x^{2}-42 x+9$
Factorise :
$2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$
Factorise :
$a^{3}-8 b^{3}-64 c^{3}-24 a b c$