Remote sensing satellites move in an orbit that is at an average height of about $500 \,km$ from the surface of the earth. The camera onboard one such satellite has a screen of area $A$ on which the images captured by it are formed. If the focal length of the camera lens is $50 \,cm$, then the terrestrial area that can be observed from the satellite is close to ............... $A$
$2 \times 10^3$
$10^6$
$10^{12}$
$4 \times 10^{12}$
A satellite is orbiting the earth in a circular orbit of radius $r.$ Its
A satellite which is geostationary in a particular orbit is taken to another orbit. Its distance from the centre of earth in new orbit is $2$ times that of the earlier orbit. The time period in the second orbit is
A satellite moves in a circle around the earth. The radius of this circle is equal to one half of the radius of the moon’s orbit. The satellite completes one revolution in
According to Kepler, the period of revolution of a planet $(T)$ and its mean distance from the sun $(r)$ are related by the equation
The satellite of mass $m$ revolving in a circular orbit of radius $r$ around the earth has kinetic energy $E$. Then its angular momentum will be