Range of a bullet fired at $45^o$ to horizontal is $980m$. If the bullet is fired at same angle from a car travelling horizontally at $18\, km/hr$ towards target then range will be increased by :-
$100\, \sqrt 2 \,m$
$100\, \sqrt 7 \,m$
$50\, \sqrt 2 \,m$
$50\, \sqrt 7 \,m$
A ball of mass $160\, g$ is thrown up at an angle of $60^{\circ}$ to the horizontal at a speed of $10 \,m / s$. The angular momentum of the ball at the highest point of the trajectory with respect to the point from which the ball is thrown is nearly $\left(g=10\, m / s ^{2}\right)$ (in $kgm ^{2} / s$)
A boy travelling in an open car moving on a levelled road with constant speed tosses a ball vertically up in the air and catches it back. Sketch the motion of the ball as observed by a boy standing on the footpath. Give explanation to support your diagram.
A particle $A$ is projected vertically upwards. Another identical particle $B$ is projected at an angle of $45^o $ . Both reach the same height. The ratio of the initial kinetic energy of $A$ to that of $B$ is
The ranges and heights for two projectiles projected with the same initial velocity at angles $42^{\circ}$ and $48^{\circ}$ with the horizontal are ${R}_{1}, {R}_{2}$ and ${H}_{1}$, ${H}_{2}$ respectively. Choose the correct option:
A very broad elevator is going up vertically with a constant acceleration of $2\,m / s ^2$. At the instant when its velocity is $4\,m / s$ a ball is projected from the floor of the lift with a speed of $4\,m / s$ relative to the floor at an elevation of $30^{\circ}$. The time taken by the ball to return the floor is $..............\,s$ $\left(g=10\,m / s ^2\right)$