The maximum height reached by a projectile is $64 \mathrm{~m}$. If the initial velocity is halved, the new maximum height of the projectile is_________.$\mathrm{m}$.
$11$
$14$
$15$
$16$
The horizontal range is four times the maximum height attained by a projectile. The angle of projection is .......... $^o$
The speed of a projectile at its maximum height is $\frac {\sqrt 3}{2}$ times its initial speed. If the range of the projectile is $P$ times the maximum height attained by it, $P$ is equal to
A piece of marble is projected from earth's surface with velocity of $19.6 \sqrt{2}\,m / s$ at $45^{\circ}.$ $2\,s$ later its velocity makes an angle $\alpha$ with horizontal, where $\alpha$ is $..........$
A gun can fire shells with maximum speed $v_0$ and the maximum horizontal range that can be achieved is $R_{max} = \frac {v_0^2}{g}$. If a target farther away by distance $\Delta x$ (beyond $R$) has to be hit with the same gun, show that it could be achieved by raising the gun to a height at least $h = \Delta x\,\left[ {1 + \frac{{\Delta x}}{R}} \right]$.
A stone is projected in air. Its time of flight is $3\,s$ and range is $150\,m$ Maximum height reached by the stone is $......\,m$ $\left(g=10\,ms ^{-2}\right)$