On a hypothetical planet satellite can only revolve in quantized energy level i.e. magnitude of energy of a satellite is integer multiple of a fixed energy. If two successive orbit have radius $R$ and $\frac{3R}{2}$ what could be maximum radius of satellite
$9R$
$6R$
$4R$
$3R$
A geostationary satellite is orbiting the earth at a height of $6\,R$ above the surface of earth ($R$ is the radius of earth). The time period of another satellite at a height of $2.5\,R$ from the surface of the earth is :-
A satellite can be in a geostationary orbit around a planet at a distance $r$ from the centre of the planet. If the angular velocity of the planet about its axis doubles, a satellite can now be in a geostationary orbit around the planet if its distance from the centre of the planet is
Two stars of masses $m_1$ and $m_2$ are parts of a binary star system. The radii of their orbits are $r_1$ and $r_2$ respectively, measured from the centre of mass of the system. The magnitude of gravitational force $m_1$ exerts on $m_2$ is
If the distance between centres of earth and moon is $D$ and the mass of earth is $81\, times$ the mass of moon, then at what distance from centre of earth the gravitational force will be zero
The height at which the weight of a body becomes $\frac{1}{9} ^{th}$ its weight on the surface of earth (radius of earth is $R$)