The height at which the weight of a body becomes $\frac{1}{9} ^{th}$ its weight on the surface of earth (radius of earth is $R$)
$h= 3\, R$
$h = R$
$h = \frac{R}{2}$
$h = 2R$
A spherical planet far out in space has a mass ${M_0}$ and diameter ${D_0}$. A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity which is equal to
Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre of the planet for $r\geq $ radius of the planet. Plots $1$ and $2$ coincide for $r\geq R_2$ and plots $3$ and $4$ coincide for $r \geq R_4$. The sequence of the planets in the descending order of their densities is
Two stars of masses $m_1$ and $m_2$ are parts of a binary star system. The radii of their orbits are $r_1$ and $r_2$ respectively, measured from the centre of mass of the system. The magnitude of gravitational force $m_1$ exerts on $m_2$ is
In a certain region of space, the gravitational field is given by $-k/r$ , where $r$ is the distance and $k$ is a constant. If the gravitational potential at $r = r_0$ be $V_0$ , then what is the expression for the gravitational potential $(V)$ ?
The two planets have radii $r_1$ and $r_2$ and their densities $p_1$ and $p_2$ respectively. The ratio of acceleration due to gravity on them will be