Consider the force $F$ on a charge $'q'$ due to a uniformly charged spherical shell of radius $R$ carrying charge $Q$ distributed uniformly over it. Which one of the following statements is true for $F,$ if $'q'$ is placed at distance $r$ from the centre of the shell $?$

  • [JEE MAIN 2020]
  • A

    $F =\frac{1}{4 \pi \varepsilon_{0}} \frac{ Qq }{ r ^{2}}$ for $r > R$

  • B

    $\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{R^{2}}>F>0$ for $r < R$

  • C

    $F =\frac{1}{4 \pi \varepsilon_{0}} \frac{ Qq }{ r ^{2}}$ for all $r$

  • D

    $F =\frac{1}{4 \pi \varepsilon_{0}} \frac{ Qq }{ R ^{2}}$ for $r < R$

Similar Questions

An early model for an atom considered it to have a positively charged point nucleus of charge $Ze$, surrounded by a uniform density of negative charge up to a radius $R$. The atom as a whole is neutral. For this model, what is the electric field at a distance $r$ from the nucleus?

A spherical conductor of radius $12 \;cm$ has a charge of $1.6 \times 10^{-7} \;C$ distributed uniformly on its surface. What is the electric field

$(a)$ inside the sphere

$(b)$ just outside the sphere

$(c)$ at a point $18\; cm$ from the centre of the sphere?

Obtain Coulomb’s law from Gauss’s law.

A long, straight wire is surrounded by a hollow, thin, long metal cylinder whose axis coincides with that of wire. The wire has a charge per unit length of $\lambda$, and the cylinder has a net charge per unit length of $2\lambda$.  Radius of the cylinder is $R$

Consider a sphere of radius $\mathrm{R}$ which carries a uniform charge density $\rho .$ If a sphere of radius $\frac{\mathrm{R}}{2}$ is carved out of it, as shown, the ratio $\frac{\left|\overrightarrow{\mathrm{E}}_{\mathrm{A}}\right|}{\left|\overrightarrow{\mathrm{E}}_{\mathrm{B}}\right|}$ of magnitude of electric field $\overrightarrow{\mathrm{E}}_{\mathrm{A}}$ and $\overrightarrow{\mathrm{E}}_{\mathrm{B}}$ respectively, at points $\mathrm{A}$ and $\mathrm{B}$ due to the remaining portion is

  • [JEE MAIN 2020]