કુલંબના નિયમ પરથી ગાઉસનો પ્રમેય સમજાવો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$Q$ અને $q$ વિદ્યુતભારો વચ્યે $r$ અંતરે લાગતું કુલંબ બળ,

$F =\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{ Q q}{r^{2}}$

$\therefore \frac{ F }{ Q }=\frac{q}{4 \pi \varepsilon_{0} \cdot r^{2}}$

પણ $\frac{ F }{ Q }=\overrightarrow{ E }$ [q ના વિદ્યુતક્ષેત્રમાં મૂકેલા $Q$ વિદ્યુતભાર પર લાગતું બળ એટલે વિદ્યુતક્ષેત્રની તીવ્રતા $E$]

$\therefore E =\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r^{2}}$

$\therefore E \times 4 \pi r^{2}=\frac{q}{\varepsilon_{0}} \therefore \int E d S =\frac{q}{\varepsilon_{0}}$જ્યાં $4 \pi r^{2}=d S$

$E$ અને $d S$ સદીશો હોવાથી,

$\therefore \int \overrightarrow{ E } \cdot d \overrightarrow{ S }=\frac{q}{\varepsilon_{0}}$ જે ગાઉસનો પ્રમેય છે.

Similar Questions

$10\; cm$ ત્રિજ્યાના એક વાહક ગોળા પર અજ્ઞાત વિદ્યુતભાર છે. ગોળાના કેન્દ્રથી $20\; cm$ દૂરના બિંદુએ વિદ્યુતક્ષેત્ર $-1.5 \times 10^{3} \;N / C$ ત્રિજ્યાવર્તી દિશામાં અંદરની તરફ હોય તો ગોળા પરનો કુલ વિદ્યુતભાર કેટલો હશે? 

જો બંધ સપાટી વડે ઘેરાતો વિધુતભાર શૂન્ય હોય, તો તે સપાટી પરના દરેક સ્થાને વિધુતક્ષેત્ર શૂન્ય હોવાનું સૂચવે છે ? બીજી બાજુ જો સપાટી પરના દરેક સ્થાને વિધુતક્ષેત્ર શૂન્ય હોય તો બંધ સપાટી વડે ઘેરાતો ચોખ્ખો (પરિણામી) વિધુતભાર શૂન્ય હોવાનું સૂચવે છે ?

$\mathrm{R}$ ત્રિજ્યા ધરાવતા ગોળા પર વિજભારઘનતા $\rho$ છે.જો તેમાથી $\frac{\mathrm{R}}{2}$ ત્રિજ્યા ધરાવતો ભાગ કાપી નાખવામાં આવે તો $\frac{\left|\overrightarrow{\mathrm{E}}_{\mathrm{A}}\right|}{\left|\overrightarrow{\mathrm{E}}_{\mathrm{B}}\right|}$ નો ગુણોત્તર કેટલો થાય? જ્યાં $\overrightarrow{\mathrm{E}}_{\mathrm{A}}$ અને $\overrightarrow{\mathrm{E}}_{\mathrm{B}}$ બિંદુ $\mathrm{A}$ અને બિંદુ $\mathrm{B}$ પાસે વિદ્યુતક્ષેત્ર છે.

  • [JEE MAIN 2020]

$+3\,Q$ વિદ્યુતભાર ધરાવતા ગોળાને $-Q$ વિદ્યુતભાર ધરાવતી ગાળીય કવચની અંદર સમકેન્દ્રિય મૂકેલ છે.ગોળાની ત્રિજયા $a$ એ ગોળીય કવચની ત્રિજયા $b(b>a)$ કરતાં નાની છે.હવે,કેન્દ્રથી $R>a$ બિંદુએ વિદ્યુતક્ષેત્ર કેટલું થાય?

$6\,m$ ત્રિજ્યા ધરાવતા ગોળાની કદ વિદ્યુતભાર ઘનતા $2\,\mu\,C / cm ^3$ છે. ગોળાની સપાટીમાંથી બહાર આવતી પ્રતિ એકમ પૃષ્ઠ ક્ષેત્રફળ દીઠ બળ રેખાઓની સંખ્યા $..........\times 10^{10} NC ^{-1}$ હશે.

 [Given : Permittivity of vacuum  $\left.\epsilon_{0}=8.85 \times 10^{-12} C ^{2} N ^{-1}- m ^{-2}\right]$

  • [JEE MAIN 2022]