Number of integral points interior to the circle $x^2 + y^2 = 10$ from which exactly one real tangent can be drawn to the curve $\sqrt {{{\left( {x + 5\sqrt 2 } \right)}^2} + {y^2}} \, - \sqrt {{{\left( {x - 5\sqrt 2 } \right)}^2} + {y^2}\,} \, = 10$ are (where integral point $(x, y)$ means $x, y  \in  I)$

  • A

    $12$

  • B

    $14$

  • C

    $16$

  • D

    $18$

Similar Questions

Let the tangents at two points $A$ and $B$ on the circle $x ^{2}+ y ^{2}-4 x +3=0$ meet at origin $O (0,0)$. Then the area of the triangle of $OAB$ is.

  • [JEE MAIN 2022]

The point at which the normal to the circle ${x^2} + {y^2} + 4x + 6y - 39 = 0$ at the point $(2, 3)$ will meet the circle again, is

Tangents $AB$ and $AC$ are drawn from the point $A(0,\,1)$ to the circle ${x^2} + {y^2} - 2x + 4y + 1 = 0$. Equation of the circle through $A, B$ and $C$ is

If the straight line $y = mx + c$ touches the circle ${x^2} + {y^2} - 2x - 4y + 3 = 0$ at the point $(2, 3)$, then $c =$

If the equation of one tangent to the circle with centre at $(2, -1)$ from the origin is $3x + y = 0$, then the equation of the other tangent through the origin is