Negation of the Boolean statement $( p \vee q ) \Rightarrow((\sim r ) \vee p )$ is equivalent to

  • [JEE MAIN 2022]
  • A

    $p \wedge(\sim q ) \wedge r$

  • B

    $(\sim p ) \wedge(\sim q ) \wedge r$

  • C

    $(\sim p ) \wedge q \wedge r$

  • D

    $p \wedge q \wedge(\sim r )$

Similar Questions

Which of the following Boolean expression is a tautology ?

  • [JEE MAIN 2021]

The Statement that is $TRUE$ among the following is

  • [AIEEE 2012]

The inverse of the proposition $(p\; \wedge \sim q) \Rightarrow r$ is

Given the following two statements :

$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.

$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.

Then

  • [JEE MAIN 2020]

Negation of "If India wins the match then India will reach in the final" is :-