Negation of the Boolean statement $( p \vee q ) \Rightarrow((\sim r ) \vee p )$ is equivalent to
$p \wedge(\sim q ) \wedge r$
$(\sim p ) \wedge(\sim q ) \wedge r$
$(\sim p ) \wedge q \wedge r$
$p \wedge q \wedge(\sim r )$
Which of the following Boolean expression is a tautology ?
The Statement that is $TRUE$ among the following is
The inverse of the proposition $(p\; \wedge \sim q) \Rightarrow r$ is
Given the following two statements :
$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.
$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.
Then
Negation of "If India wins the match then India will reach in the final" is :-