Negation of $p \wedge (\sim q \vee \sim r)$ is -
$(p \vee q) \wedge (\sim p \vee r)$
$(\sim p \vee q) \wedge (\sim p \vee r)$
$(p \wedge q) \vee (p \vee r)$
$(\sim p \vee q) \vee (\sim p \vee r)$
The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to
The Statement that is $TRUE$ among the following is
The negation of the compound statement $^ \sim p \vee \left( {p \vee \left( {^ \sim q} \right)} \right)$ is
The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to
Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction