Negation of $p \wedge (\sim q \vee \sim r)$ is -

  • A

    $(p \vee q) \wedge (\sim p \vee r)$

  • B

    $(\sim p \vee q) \wedge (\sim p \vee r)$

  • C

    $(p \wedge q) \vee (p \vee r)$

  • D

    $(\sim p \vee q) \vee (\sim p \vee r)$

Similar Questions

The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to

  • [JEE MAIN 2019]

The Statement that is $TRUE$ among the following is

  • [AIEEE 2012]

The negation of the compound statement $^ \sim p \vee \left( {p \vee \left( {^ \sim q} \right)} \right)$ is

The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to

  • [JEE MAIN 2023]

Among the statements

$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology

$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction

  • [JEE MAIN 2023]