Let the equation $x^{2}+y^{2}+p x+(1-p) y+5=0$ represent circles of varying radius $\mathrm{r} \in(0,5]$. Then the number of elements in the set $S=\left\{q: q=p^{2}\right.$ and $\mathrm{q}$ is an integer $\}$ is ..... .
$60$
$61$
$62$
$63$
Let the centre of a circle, passing through the point $(0,0),(1,0)$ and touching the circle $x^2+y^2=9$, be $(h, k)$. Then for all possible values of the coordinates of the centre $(h, k), 4\left(h^2+k^2\right)$ is equal to .............
If the circles ${x^2} + {y^2} - 9 = 0$ and ${x^2} + {y^2} + 2ax + 2y + 1 = 0$ touch each other, then $a =$
If the circles $x^{2}+y^{2}+6 x+8 y+16=0$ and $x^{2}+y^{2}+2(3-\sqrt{3}) x+x+2(4-\sqrt{6}) y$ $= k +6 \sqrt{3}+8 \sqrt{6}, k >0$, touch internally at the point $P(\alpha, \beta)$, then $(\alpha+\sqrt{3})^{2}+(\beta+\sqrt{6})^{2}$ is equal to $\dots\dots$
Number of common tangents to the circles
$x^2 + y^2 -2x + 4y -4 = 0$ and
$x^2 + y^2 -8x -4y + 16 = 0 $ is-
A circle $C_1$ of radius $2$ touches both $x$ -axis and $y$ -axis. Another circle $C_2$ whose radius is greater than $2$ touches circle $C_1$ and both the axes. Then the radius of circle $C_2$ is-