Let function $f(x) = {x^2} + x + \sin x - \cos x + \log (1 + |x|)$ be defined over the interval $[0, 1]$. The odd extensions of $f(x)$ to interval $[-1, 1]$ is

  • A

    ${x^2} + x + \sin x + \cos x - \log (1 + |x|)$

  • B

    $ - {x^2} + x + \sin x + \cos x - \log (1 + |x|)$

  • C

    $ - {x^2} + x + \sin x - \cos x + \log (1 + |x|)$

  • D

    None of these

Similar Questions

Let $A= \{1, 2, 3, 4\}$ and $R : A \to A$ be the relation defined by $R = \{ (1, 1), (2, 3), (3, 4), ( 4, 2) \}$. The correct statement is

  • [JEE MAIN 2013]

Let $f$ be a function defined on the set of all positive integers such that $f(x y)=f(x)+f(y)$ for all positive integers $x, y$. If $f(12)=24$ and $f(8)=15$. The value of $f(48)$ is

  • [KVPY 2016]

If $\phi (x) = {a^x}$, then ${\{ \phi (p)\} ^3} $ is equal to

Solve $|x\,-\,2| + |x\,-\,1| = x\,-\,3$

Let $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$. Then the set $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ is

  • [IIT 1995]