Let $f$ be a function defined on the set of all positive integers such that $f(x y)=f(x)+f(y)$ for all positive integers $x, y$. If $f(12)=24$ and $f(8)=15$. The value of $f(48)$ is
$31$
$32$
$33$
$34$
Show that the function $f: N \rightarrow N ,$ given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x>2,$ is onto but not one-one.
For a suitably chosen real constant $a$, let a function, $f: R-\{-a\} \rightarrow R$ be defined by $f(x)=\frac{a-x}{a+x} .$ Further suppose that for any real number $x \neq- a$ and $f( x ) \neq- a ,( fof )( x )= x .$ Then $f\left(-\frac{1}{2}\right)$ is equal to
The domain of definition of the function $f (x) = {\log _{\left[ {x + \frac{1}{x}} \right]}}|{x^2} - x - 6|+ ^{16-x}C_{2x-1} + ^{20-3x}P_{2x-5}$ is
Where $[x]$ denotes greatest integer function.
Let $E = \{ 1,2,3,4\} $ and $F = \{ 1,2\} $.Then the number of onto functions from $E$ to $F$ is
Let $A = \{ {x_1},\,{x_2},\,............,{x_7}\} $ and $B = \{ {y_1},\,{y_2},\,{y_3}\} $ be two sets containing seven and three distinct elements respectively. Then the total number of functions $f : A \to B$ that are onto, if there exist exactly three elements $x$ in $A$ such that $f(x)\, = y_2$, is equal to