${S_1},{S_2},......,{S_{101}}$ એ કોઈ સમાંતર શ્રેણીના ક્રમિક પદો છે જો $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ અને ${S_1} + {S_{101}} = 50$ ,હોય તો $\left| {{S_1} - {S_{101}}} \right|$ ની કિમત મેળવો 

  • A

    $10$

  • B

    $20$

  • C

    $30$

  • D

    $40$

Similar Questions

જો સમીકરણ $a{x^2} + bx + c = 0$ ના બીજનો સરવાળો એ બીજના  વર્ગના વ્યસ્તના સરવાળા બરાબર હોય તો  $b{c^2},\;c{a^2},\;a{b^2}$ એ   . . . .  શ્રેણીમાં છે .

  • [IIT 1976]

અહી $a_1=8, a_2, a_3, \ldots a_n$  એ સમાંતર શ્રેણી માં છે . જો પ્રથમ ચાર પદોનો સરવાળો  $50$ અને અંતિમ ચાર પદોનો સરવાળો  $170$ હોય તો મધ્યના બે પદોનો ગુણાકાર મેળવો.

  • [JEE MAIN 2023]

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=(-1)^{n-1} 5^{n+1}$

જો  $a_1 , a_2, a_3, .... , a_n$ એ સમાંતર શ્રેણીમાં હોય અને જો $a_3 + a_7 + a_{11} + a_{15} = 72$ ,તો પ્રથમ  $17$ પદનો સરવાળો મેળવો.

  • [JEE MAIN 2016]

સમગુણોત્તર શ્રેણીના કેટલાક પદોનો સરવાળો $728$ છે, જો સામાન્ય ગુણોત્તર $3$ હોય અને છેલ્લું પદ $486$ તો શ્રેણીનું પહેલું પદ શું હોય?