Let $f: R -\{0\} \rightarrow(-\infty, 1)$ be a polynomial of degree $2$ , satisfying $f( x ) f\left(\frac{1}{ x }\right)=f( x )+f\left(\frac{1}{ x }\right)$. If $f(K)=-2 K$, then the sum of squares of all possible values of $K$ is :

  • [JEE MAIN 2025]
  • A
    $1$
  • B
    $6$
  • C
    $7$
  • D
    $9$

Similar Questions

In the equation ${x^3} + 3Hx + G = 0$, if $G$ and $H$ are real and ${G^2} + 4{H^3} > 0,$ then the roots are

The number of ordered pairs $(x, y)$ of real numbers that satisfy the simultaneous equations $x+y^2=x^2+y=12$ is

  • [KVPY 2015]

Let $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ and $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, then  $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ holds good for

If the product of roots of the equation ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ is $7$, then its roots will real when

  • [IIT 1984]

Let $S=\left\{\sin ^2 2 \theta:\left(\sin ^4 \theta+\cos ^4 \theta\right) x^2+(\sin 2 \theta) x+\right.$ $\left(\sin ^6 \theta+\cos ^6 \theta\right)=0$ has real roots $\}$. If $\alpha$ and $\beta$ be the smallest and largest elements of the set $S$, respectively, then $3\left((\alpha-2)^2+(\beta-1)^2\right)$ equals....................

  • [JEE MAIN 2024]