Let $f$ be a function satisfying $f(xy) = \frac{f(x)}{y}$ for all positive real numbers $x$ and $y.$ If $ f(30) = 20,$ then the value of $f(40)$ is-

  • A

    $15$

  • B

    $20$

  • C

    $40$

  • D

    $60$

Similar Questions

Let $f(x)$ and $g(x)$ be two functions given by $f\left( x \right) = \frac{{2\sin \pi x}}{x}$ and $g\left( x \right) = f\left( {1 - x} \right) + f\left( x \right).$ If $g\left( x \right) = kf(\frac{x}{2})f\left( {\frac{{1 - x}}{2}} \right)$,then the value of $k$ is

Which of the following is correct

If $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, for what value of $\alpha $ is $f(f(x)) = x$

If ${e^x} = y + \sqrt {1 + {y^2}} $, then $y =$

Greatest value of the function, $f(x) =  - 1 + \frac{2}{{{2^x}^2 + 1}}$ is