Let $ \alpha _1, \alpha _2$ are two values of $\alpha $ for which the system $2 \alpha x + y = 5, x - 6y = \alpha $ and $x + y = 2$ is consistent, then $ |2(\alpha _1 + \alpha _2)| $ is -
$21$
$23$
$25$
$27$
Find values of ${x},$ if $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
If the system of linear equation $x - 4y + 7z = g,\,3y - 5z = h, \,-\,2x + 5y - 9z = k$ is
consistent, then
If the system of equations $x - ky - z = 0$, $kx - y - z = 0$ and $x + y - z = 0$ has a non zero solution, then the possible value of k are
The system of equations $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ has no solution, if $\alpha $ is
Let $A = \left[ {\begin{array}{*{20}{c}}5&{5\alpha }&\alpha \\0&\alpha &{5\alpha }\\0&0&5\end{array}} \right]$, If ${\left| A \right|^2} = 25$, then $\left| \alpha \right|$ equals