Let $S_1,S_2$ and $S_3$ be three circles of unit radius which touch each other externally. The common tangent to each pair of circles are drawn and extended so that they can intersect and form a triangle $ABC$ with circumradius $R,$ then $R$ is equal to
$4+2\sqrt 3$
$2(1+\frac{1}{\sqrt 3})$
$4(1+\sqrt 3)$
$\frac{3(1+\sqrt 3)}{2}$
A circular wire of radius $7\,cm$ is cut and bend again into an arc of a circle of radius $12\,cm$. The angle subtended by the arc at the centre is ......$^o$
If $x{\sin ^3}\alpha + y{\cos ^3}\alpha = \sin \alpha \cos \alpha $ and $x\sin \alpha - y\cos \alpha = 0,$ then ${x^2} + {y^2} = $
If $\left| {\cos \,\theta \,\left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}\,} \right|\, \le k,$ then the value of $k$ is
Find the value of the trigonometric function $\cos ec \left(-1410^{\circ}\right)$
If $p = \frac{{2\sin \,\theta }}{{1 + \cos \theta + \sin \theta }}$, and $q = \frac{{\cos \theta }}{{1 + \sin \theta }},$ then