Let $A =$ $\left[ {\begin{array}{*{20}{c}}{1 + {x^2} - {y^2} - {z^2}}&{2(xy + z)}&{2(zx - y)}\\{2(xy - z)}&{1 + {y^2} - {z^2} - {x^2}}&{2(yz + x)}\\{2(zx + y)}&{2(yz - x)}&{1 + {z^2} - {x^2} - {y^2}}\end{array}} \right]$  then det. $A$ is equal to

  • A
    $(1 + xy + yz + zx)^3$
  • B
    $(1 + x^2 + y^2 + z^2)^3$
  • C
    $(xy + yz + zx)^3$
  • D
    $(1 + x^3 + y^3 + z^3)^2$

Similar Questions

Find values of $x$ for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$

Let $S$ be the set of all real values of $k$ for which the system oflinear equations $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ has a unique solution. Then $S$ is

  • [JEE MAIN 2018]

$\left| {\begin{array}{*{20}{c}}
{4 + {x^2}}&{ - 6}&{ - 2}\\
{ - 6}&{9 + {x^2}}&3\\
{ - 2}&3&{1 + {x^2}}
\end{array}} \right|$ $;(x\neq0)$ is not divisible by

Number of values of $m$ for which the lines $x + y - 1 = 0$, $(m - 1) x + (m^2 - 7) y - 5 = 0 \,\,\&\,\, (m - 2) x + (2m - 5) y = 0$ are concurrent, are

$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $