माना $\omega$ एक सम्मिश्र संख्या ऐसी है कि $2 w +1=z$ जहाँ $z=\sqrt{-3}$ है। यदि

$\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ है तो $k$ बराबर है:

  • [JEE MAIN 2017]
  • A

    $1$

  • B

    $-z$

  • C

    $z$

  • D

    $-1$

Similar Questions

रैखिक समीकरणों का निकाय ${a_1}x + {b_1}y + {c_1}z + {d_1} = 0$, ${a_2}x + {b_2}y + {c_2}z + {d_2} = 0$ तथा ${a_3}x + {b_3}y + {c_3}z + {d_3} = 0$ पर विचार करते है। माना सारणिक $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$,$\Delta (a,b,c)$ द्वारा प्रदर्शित करते हैं यदि $\Delta (a,b,c) \ne 0$, तब समीकरणों के अद्वितीय हल के लिये $x$ का मान है

$'K'$ के मानो की संख्या, जिनके लिए समीकरण निकाय

$(k+1) x+8 y=4 k$

$k x+(k+3) y=3 k-1$

के पास कोई हल नहीं है, है

  • [JEE MAIN 2013]

यदि रैखिक समीकरण निकाय $2 x+2 y+3 z=a$, $3 x-y+5 z=b$, $x-3 y+2 z=c$ जहाँ $a , b , c$ शून्येतर वास्तविक संख्यायें है, के एक से अधिक हल हैं, तो

  • [JEE MAIN 2019]

$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ - x}})}^2}}&{{{({a^x} - {a^{ - x}})}^2}}&1\\{{{({b^x} + {b^{ - x}})}^2}}&{{{({b^x} - {b^{ - x}})}^2}}&1\\{{{({c^x} + {c^{ - x}})}^2}}&{{{({c^x} - {c^{ - x}})}^2}}&1\end{array}\,} \right| = $

यदि रेखीय समीकरणों का निकाय

$2 x+3 y-z=-2$

$x+y+z=4$

$x-y+|\lambda| z=4 \lambda-4$

जहाँ $\lambda \in R$, का कोई हल ना हो, तब

  • [JEE MAIN 2022]