જો બિંદુ $P$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ પરનું ચલબિંદુ હોય અને નાભિઓ ${F_1}$ અને ${F_2}$ છે.જો $A$ એ ત્રિકોણ $P{F_1}{F_2}$ નું ક્ષેત્રફળ હોય તો $A$ ની મહતમ કિંમત મેળવો.
$ab$
$abe$
$\frac{e}{{ab}}$
$\frac{{ab}}{e}$
ઉપવલયની બે નાભિ વચ્ચેનું અંતર $6$ તથા તેની ગૈાણ અક્ષની લંબાઇ $8 $ હોય તો $e$ મેળવો.
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{4}+\frac{y^2} {25}=1$.
જો ઉપવલયની ગૌણ અક્ષ (તેની અક્ષોને અનુક્રમે $x$ અને $y$ ની અક્ષ તરીકે લેતા) ના અંત્યબિંદુનું નાભિ અંતર $k$ હોય અને તેની નાભિઓ વચ્ચેનું અંતર $2h$ હોય તો તેનું સમીકરણ :
ઉપવલય $4{x^2} + 9{y^2} = 1$ પરના . . . . . બિંદુથી દોરવામાં આવેલ સ્પર્શકએ રેખા $8x = 9y$ ને સમાંતર થાય.
બે ઉપવલયો ${E_1}:\,\frac{{{x^2}}}{3} + \frac{{{y^2}}}{2} = 1$ અને ${E_2}:\,\frac{{{x^2}}}{16} + \frac{{{y^2}}}{b^2} = 1$ છે જો તેમની ઉત્કેન્દ્રતાનો ગુણાકાર $\frac {1}{2}$ થાય તો ઉપવલય $E_2$ ની ગૌણઅક્ષની લંબાઈ મેળવો.