Let $\alpha$ and $\beta$ be the roots of the equation $5 x^{2}+6 x-2=0 .$ If $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ then :

  • [JEE MAIN 2020]
  • A

    $5 \mathrm{S}_{6}+6 \mathrm{S}_{5}=2 \mathrm{S}_{4}$

  • B

    $5 \mathrm{S}_{6}+6 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$

  • C

    $6 \mathrm{S}_{6}+5 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$

  • D

    $6 \mathrm{S}_{6}+5 \mathrm{S}_{5}=2 \mathrm{S}_{4}$

Similar Questions

Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1}  + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is

The number of integers $k$ for which the equation $x^3-27 x+k=0$ has at least two distinct integer roots is

  • [KVPY 2016]

The equation $\sqrt {3 {x^2} + x + 5} = x - 3$ , where $x$ is real, has

  • [JEE MAIN 2014]

If $x$ is real, then the maximum and minimum values of expression $\frac{{{x^2} + 14x + 9}}{{{x^2} + 2x + 3}}$ will be

The number of solutions, of the equation $\mathrm{e}^{\sin x}-2 e^{-\sin x}=2$ is

  • [JEE MAIN 2024]