Let $l_1, l_2, \ldots, l_{100}$ be consecutive terms of an arithmetic progression with common difference $d_1$, and let $w_1, w_2, \ldots, w_{100}$ be consecutive terms of another arithmetic progression with common difference $d_2$, where $d_1 d_2=10$. For each $i=1,2, \ldots, 100$, let $R_i$ be a rectangle with length $l_i$, width $w_i$ and area $A_i$. If $A_{51}-A_{50}=1000$, then the value of $A_{100}-A_{90}$ is. . . . . 

  • [IIT 2022]
  • A

    $18900$

  • B

    $18901$

  • C

    $18902$

  • D

    $18903$

Similar Questions

If $a,\;b,\;c,\;d,\;e,\;f$ are in $A.P.$, then the value of $e - c$ will be

Let $T_r$ be the $r^{\text {th }}$ term of an $A.P.$ If for some $m$, $T _{ m }=\frac{1}{25}, T_{25}=\frac{1}{20}$ and $20 \sum_{ r =1}^{25} T_{ r }=13$, then $5 m \sum_{ r = m }^{2 m} T _{ r }$ is equal to:

  • [JEE MAIN 2025]

A manufacturer reckons that the value of a machine, which costs him $Rs.$ $15625$ will depreciate each year by $20 \% .$ Find the estimated value at the end of $5$ years.

Let $a_1, a_2, \ldots \ldots, a_n$ be in A.P. If $a_5=2 a_3$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to $..........$.

  • [JEE MAIN 2023]

If sum of $n$ terms of an $A.P.$ is $3{n^2} + 5n$ and ${T_m} = 164$ then $m = $