Let the points $\left(\frac{11}{2}, \alpha\right)$ lie on or inside the triangle with sides $x + y =11, x +2 y =16$ and $2 x +3 y =29$. Then the product of the smallest and the largest values of $\alpha$ is equal to :

  • [JEE MAIN 2025]
  • A
    $22$
  • B
    $44$
  • C
    $33$
  • D
    $55$

Similar Questions

Triangle formed by the lines $3x + y + 4 = 0$ , $3x + 4y -15 = 0$ and $24x -7y = 3$ is a/an

The diagonal passing through origin of a quadrilateral formed by $x = 0,\;y = 0,\;x + y = 1$ and $6x + y = 3,$ is

  • [IIT 1973]

The point moves such that the area of the triangle formed by it with the points $(1, 5)$ and $(3, -7)$ is $21$ sq. unit. The locus of the point is

For a point $P$ in the plane, let $d_1(P)$ and $d_2(P)$ be the distance of the point $P$ from the lines $x-y=0$ and $x+y=0$ respectively. The area of the region $R$ consisting of all points $P$ lying in the first quadrant of the plane and satisfying $2 \leq d_1(P)+d_2(P) \leq 4$, is

  • [IIT 2014]

A straight line cuts off the intercepts $OA = a$ and $OB = b$ on the positive directions of $x$-axis and $y -$ axis respectively. If the perpendicular from origin $O$ to this line makes an angle of $\frac{\pi}{6}$ with positive direction of $y$-axis and the area of $\triangle OAB$ is $\frac{98}{3} \sqrt{3}$, then $a ^2- b ^2$ is equal to:

  • [JEE MAIN 2023]