જો $R$ અને $S$ એ ગણ $A$ પરના અરિકત સંબંધ છે તો આપેલ વિધાન પૈકી ... અસત્ય છે. 

  • A

    $R$ અને $S$ પરંપરિત હોય ==> $R \cup S$ એ પરંપરિત હોય.

  • B

    $R$ અને $S$ પરંપરિત હોય ==> $R \cap S$ એ પરંપરિત હોય.

  • C

    $R$ અને $S$ સંમિત હોય==> $R \cup S$  એ સંમિત હોય

  • D

    $R$ અને $S$ સ્વવાચક હોય==>$R \cap S$ એ સ્વવાચક હોય.

Similar Questions

જો $A = \{1, 2, 3, 4\}$ અને $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ એ ગણ $A$ પરનો સંબંધ છે તો $R$ એ . .  ..

The સંબંધ "congruence modulo $m$" is

જો સંબંધ $R$  એ $A = \{1,2, 3, 4\}$ થી  $B = \{1, 3, 5\}$ પર $(a,\,b) \in R \Leftrightarrow a < b,$ દ્વારા વ્યાખ્યાયિત હોય તો $Ro{R^{ - 1}}$=

ધારો કે $\mathbb{N} \times \mathbb{N}$ પર એક સંબંધ $\mathrm{R}$ એ "( $\left.x_1, y_1\right) \mathrm{R}\left(x_2, y_2\right)$ તો અને તો જ $x_1 \leq x_2$ અથવા $y_1 \leq y_2$ " પ્રમાણે વ્યાખ્યાયિત કરેલ છે.

બે વિધાનો ધ્યાને લો:

($I$) $\mathrm{R}$ સ્વવાચક છે પરંતુ સંમિત નથી .

($II$) $R$ પરંપરિત છે

તો નીચેના પૈકી કયુ એક સાયું છે

  • [JEE MAIN 2024]

જો $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ એ ગણ $A = \{1, 2, 3, 4\}$ પરનો સંબંધ આપેલ હોય તો સંબંધ $R$ એ . . . . છે.

  • [AIEEE 2004]