જો સંબંધ $R$ એ ગણ $N$ પર “$nRm \Leftrightarrow n$ એ $m$ નો અવયવ છે.(i.e., $n|m$)” દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . .
સ્વવાચક અને સંમિત
સંમિત અને પરંપરિત
સામ્ય સંબંધ
સ્વવાચક અને પરંપરિત છે પરંતુ સંમિત નથી.
ધારો કે $R$ એ $N \times N$ પરનું નીચે મુજબ વ્યાખ્યાયિત સંબંધ છે: "જો $(a, b) R (c, d)$ તો અને તો $\gamma a d(b-c)=b c(a-d)$ ".તો $R............$.
ગણ $\{a, b, c, d\}$ પરનું સંબંધ $R = \{(a, b), (b, c), (b, d)\}$ સામ્ય સંબંંધ બને તે માટે ઓછામાં ઓછી સંખ્યામાં ઉમેરવામા આવતા ધટકોની સંખ્યા $............$ છે.
જો $R= \{(3, 3) (5, 5), (9, 9), (12, 12), (5, 12), (3, 9), (3, 12), (3, 5)\}$ એ ગણ $A= \{3, 5, 9, 12\}.$ પરનો સંબધ હોય તો $R$ એ . . . .
જો $A = \{1, 2, 3, 4\}$ અને $R$ એ $A$ પરનો સંબંધ છે કે જેથી $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$.તો $R$ એ . . .
The સંબંધ "congruence modulo $m$" is