Let $R = \{ (3,\,3),\;(6,\;6),\;(9,\,9),\;(12,\,12),\;(6,\,12),\;(3,\,9),(3,\,12),\,(3,\,6)\} $ be a relation on the set $A = \{ 3,\,6,\,9,\,12\} $. The relation is

  • [AIEEE 2005]
  • A

    An equivalence relation

  • B

    Reflexive and symmetric only

  • C

    Reflexive and transitive only

  • D

    Reflexive only

Similar Questions

Let $R$ be a relation on $R$, given by $R=\{(a, b): 3 a-3 b+\sqrt{7}$ is an irrational number $\}$. Then $R$ is

  • [JEE MAIN 2023]

Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation $R$ in the set $A$ of human beings in a town at a particular time given by

$R =\{(x, y): x$ is exactly $7\,cm $ taller than $y\}$

Let $R_{1}$ and $R_{2}$ be two relations defined on $R$ by $a R _{1} b \Leftrightarrow a b \geq 0$ and $a R_{2} b \Leftrightarrow a \geq b$, then

  • [JEE MAIN 2022]

Show that the relation $\mathrm{R}$ in the set $\mathrm{A}$ of points in a plane given by $\mathrm{R} =\{( \mathrm{P} ,\, \mathrm{Q} ):$ distance of the point $\mathrm{P}$ from the origin is same as the distance of the point $\mathrm{Q}$ from the origin $\}$, is an equivalence relation. Further, show that the set of all points related to a point $\mathrm{P} \neq(0,\,0)$ is the circle passing through $\mathrm{P}$ with origin as centre.

Let $N$ be the set of natural numbers and a relation $R$ on $N$ be defined by $R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\} .$ Then the relation $R$ is:

  • [JEE MAIN 2021]