The void relation on a set $A$ is
Reflexive
Symmetric and transitive
Reflexive and symmetric
Reflexive and transitive
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R =\{(x, y): x$ is exactly $7\,cm $ taller than $y\}$
Let $R = \{ (3,\,3),\;(6,\;6),\;(9,\,9),\;(12,\,12),\;(6,\,12),\;(3,\,9),(3,\,12),\,(3,\,6)\} $ be a relation on the set $A = \{ 3,\,6,\,9,\,12\} $. The relation is
If $R \subset A \times B$ and $S \subset B \times C\,$ be two relations, then ${(SoR)^{ - 1}} = $
Let $R_1$ be a relation defined by $R_1 =\{(a, b) | a \geq b, a, b \in R\}$ . Then $R_1$ is
Let $S=\{1,2,3, \ldots, 10\}$. Suppose $M$ is the set of all the subsets of $S$, then the relation $R=\{(A, B): A \cap B \neq \phi ; A, B \in M\}$ is :