Let $n$ be a fixed positive integer. Define a relation $R$ on the set $Z$ of integers by, $aRb \Leftrightarrow n|a - b$|. Then $R$ is
Reflexive
Symmetric
Transitive
All of the above
$R$ is a relation from $\{11, 12, 13\}$ to $\{8, 10, 12\}$ defined by $y = x - 3$. Then ${R^{ - 1}}$ is
Let $R =\{( P , Q ) \mid P$ and $Q$ are at the same distance from the origin $\}$ be a relation, then the equivalence class of $(1,-1)$ is the set
Consider set $A = \{1,2,3\}$ . Number of symmetric relations that can be defined on $A$ containing the ordered pair $(1,2)$ & $(2,1)$ is
Show that the relation $R$ in the set $\{1,2,3\}$ given by $R =\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.
If $R$ is a relation on the set $N$, defined by $\left\{ {\left( {x,y} \right);3x + 3y = 10} \right\}$
Statement $-1$ : $R$ is symmetric
Statement $-2$ : $R$ is reflexive
Statement $-3$ : $R$ is transitive, then thecorrect sequence of given statements is
(where $T$ means true and $F$ means false)