જો $L$ એ સમતલમાં આવેલ બધીજ રેખા નો ગણ દર્શાવે છે. જો સંબંધ $R =$ {$\alpha R\beta \Leftrightarrow \alpha \bot \beta ,\,\alpha ,\,\beta \in L$} દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . .
સ્વવાચક
સંમિત
પરંપરિત
એકપણ નહીં.
જો ગણ $A = \{1, 2, 3, 4\}$ પરના સામ્ય સંબંધોની મહત્તમ સંખ્યાઓ $N$ હોય તો ...
સંબંધ $R$ એ ગણ $A=\{1,2,3,4,5,6,7\}$ પર $R =\{(a, b):$ $a$ અને $b$ બંને અયુગ્મ અથવા બંને યુગ્મ $\} $ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $R$ એ સામ્ય સંબંધ છે. એ સાથે જ સાબિત કરો કે $ \{1,3,5,7\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે અને $\{2,4,6\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે, પરંતુ $\{1,3,5,7\}$ નો કોઈ પણ ઘટક ઉપગણ $\{2,4,6\}$ ના કોઈ પણ ઘટક સાથે $R$ દ્વારા સંબંધિત નથી.
જો સંબંધ ${R_1}$ એ ${R_1} = \{ (a,\,b)|a \ge b,\,a,\,b \in R\} $ દ્વારા વ્યાખ્યાયિત હોય તો ${R_1}$ એ . . . .
સંબંધ $R$ એ ગણ $A = \{1, 2, 3, 4, 5\}$ પર વ્યાખ્યાયિત હોય તો $R = \{(x, y)$ : $|{x^2} - {y^2}| < 16\} $ =
અહી $R$ એ વાસ્તવિક સંખ્યા પરનો સંબંધ છે. કે જે $R=\{(a, b): 3 a-3 b+\sqrt{7}$ એ અસંમેય સંખ્યા છે $\}$. તો $R$ એ . . . .