Let $L$ denote the set of all straight lines in a plane. Let a relation $R$ be defined by $\alpha R\beta \Leftrightarrow \alpha \bot \beta ,\,\alpha ,\,\beta \in L$. Then $R$ is
Reflexive
Symmetric
Transitive
None of these
Among the relations $S =\left\{( a , b ): a , b \in R -\{0\}, 2+\frac{ a }{ b } > 0\right\}$ And $T =\left\{( a , b ): a , b \in R , a ^2- b ^2 \in Z \right\}$,
If $R$ be a relation $<$ from $A = \{1,2, 3, 4\}$ to $B = \{1, 3, 5\}$ i.e., $(a,\,b) \in R \Leftrightarrow a < b,$ then $Ro{R^{ - 1}}$ is
Let $R$ be a relation on a set $A$ such that $R = {R^{ - 1}}$, then $R$ is
Give an example of a relation. Which is Reflexive and transitive but not symmetric.
Let $P ( S )$ denote the power set of $S =\{1,2,3, \ldots, 10\}$. Define the relations $R_1$ and $R_2$ on $P(S)$ as $A R_1 B$ if $\left( A \cap B ^{ c }\right) \cup\left( B \cap A ^{ c }\right)=\varnothing$ and $AR _2 B$ if $A \cup B ^{ c }=$ $B \cup A ^{ c }, \forall A , B \in P ( S )$. Then :