Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. If relation $R$ from $A$ to $B$ is given by $R =\{(1, 3), (2, 5), (3, 3)\}$. Then ${R^{ - 1}}$ is

  • A

    $\{(3, 3), (3, 1), (5, 2)\}$

  • B

    $\{(1, 3), (2, 5), (3, 3)\}$

  • C

    $\{(1, 3), (5, 2)\}$

  • D

    None of these

Similar Questions

If $A = \left\{ {x \in {z^ + }\,:x < 10} \right.$& and $x$ is a multiple of $3$ or $4\}$, where $z^+$ is the set of positive integers, then the total number of symmetric relations on $A$ is

  • [AIEEE 2012]

In order that a relation $R$ defined on a non-empty set $A$ is an equivalence relation, it is sufficient, if $R$

Let $P ( S )$ denote the power set of $S =\{1,2,3, \ldots, 10\}$. Define the relations $R_1$ and $R_2$ on $P(S)$ as $A R_1 B$ if $\left( A \cap B ^{ c }\right) \cup\left( B \cap A ^{ c }\right)=\varnothing$ and $AR _2 B$ if $A \cup B ^{ c }=$ $B \cup A ^{ c }, \forall A , B \in P ( S )$. Then :

  • [JEE MAIN 2023]

The void relation on a set $A$ is

Let $A = \{ 2,\,4,\,6,\,8\} $. $A$ relation $R$ on $A$ is defined by $R = \{ (2,\,4),\,(4,\,2),\,(4,\,6),\,(6,\,4)\} $. Then $R$ is