Let $U$ be the universal set and $A \cup B \cup C = U$. Then $\{ (A - B) \cup (B - C) \cup (C - A)\} '$ is equal to

  • A

    $A \cup B \cup C$

  • B

    $A \cup (B \cap C)$

  • C

    $A \cap B \cap C$

  • D

    $A \cap (B \cup C)$

Similar Questions

If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that

$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Let $U=\{1,2,3,4,5,6,7,8,9,10\}$ and $A=\{1,3,5,7,9\} .$ Find $A^{\prime}$

Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find

$B^{\prime}$

If $A$ and $B$ are two given sets, then $A \cap {(A \cap B)^c}$ is equal to

Taking the set of natural numbers as the universal set, write down the complements of the following sets:

$\{ x:x \in N$ and $2x + 1\, > \,10\} $