Let $U$ be the universal set and $A \cup B \cup C = U$. Then $\{ (A - B) \cup (B - C) \cup (C - A)\} '$ is equal to
$A \cup B \cup C$
$A \cup (B \cap C)$
$A \cap B \cap C$
$A \cap (B \cup C)$
Draw appropriate Venn diagram for each of the following:
$A^{\prime} \cup B^{\prime}$
Let $U = \{ 1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10\} $, $A = \{ 1,\,2,\,5\} ,\,B = \{ 6,\,7\} $, then $A \cap B'$ is
If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:
$C=\{a, c, e, g\}$
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$(A \cup B)^{\prime}$
If $A$ and $B$ are two given sets, then $A \cap {(A \cap B)^c}$ is equal to