If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
$U=\{1,2,3,4,5,6,7,8,9\}$
$A=\{2,4,6,8\}, B=\{2,3,5,7\}$
$(A \cap B)^{\prime}=\{2\}^{\prime}=\{1,3,4,5,6,7,8,9\}$
$A^{\prime} \cup B^{\prime}=\{1,3,5,7,9\} \cup\{1,4,6,8,9\}=\{1,3,4,5,6,7,8,9\}$
$\therefore(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$A^{\prime}$
If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:
$D=\{f, g, h, a\}$
Let $A$ and $B$ be two sets then $(A \cup B)' \cup (A' \cap B)$ is equal to
Let $\mathrm{U}$ be universal set of all the students of Class $\mathrm{XI}$ of a coeducational school and $\mathrm{A}$ be the set of all girls in Class $\mathrm{XI}$. Find $\mathrm{A}'.$
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{ x:x$ is a positive multiple of $3\} $