Let $f :[2,4] \rightarrow R$ be a differentiable function such that $\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1$, $x \in[2,4]$ with $f(2)=\frac{1}{2}$ and $f(4)=\frac{1}{4}$.

Consider the following two statements:

$(A): f(x) \leq 1$, for all $x \in[2,4]$

$(B)$ : $f(x) \geq \frac{1}{8}$, for all $x \in[2,4]$

Then,

  • [JEE MAIN 2023]
  • A

    Only statement $(B)$ is true

  • B

    Neither statement $(A)$ nor statement $(B)$ is true

  • C

    Both the statement $(A)$ and $(B)$ are true

  • D

    Only statement $(A)$ is true

Similar Questions

If Rolle's theorem holds for the function $f(x) = 2{x^3} + b{x^2} + cx,\,x\, \in \,\left[ { - 1,1} \right]$ at the point $x = \frac{1}{2}$ , then $(2b+c)$ is equal to 

Let $f: R \rightarrow R$ be a differentiable function such that $f(a)=0=f(b)$ and $f^{\prime}(a) f^{\prime}(b) > 0$ for some $a < b$. Then, the minimum number of roots of $f^{\prime}(x)=0$ in the interval $(a, b)$ is

  • [KVPY 2010]

The function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfy the conditions of Rolle's theorem in $[1, 3]. $ The values of  $a $ and $ b $ are

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?

$f(x)=[x]$ for $x \in[-2,2]$

If $f(x) = \cos x,0 \le x \le {\pi \over 2}$, then the real number $ ‘c’ $ of the mean value theorem is